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Infinite stage and finite stage games are considered in a tree-like graph in which a certain simultaneous game corresponds to 
each vertex. A definition of a strong Nash transferable equilibrium is given. In the case of infinite stage games, a regularization 
procedure is introduced which enables a strong transferable equilibrium to be constructed. A strong transferable equilibrium is 
found in explicit form for the specific case o the n-person, repeated, infinite stage "Prisoner's dilemma" game. A new class of 
Nash equilibria, based on the use of penalty strategies, is defined in the case of finite stage games. Explicit analytical formulae 
are obtained for the number of stages required for the penalty. It is shown that the payoffs in a given equilibrium exceed the 
payoffs in the classical absolute equilibrium. © 2004 Elsevier Ltd. All rights reserved. 

These are theorems in the literature [1-3] on the theory of multistage and repeated games, from which 
it follows that it is possible to construct Pareto optimal equilibria using penalty strategies. Since the 
authorship of these theorems has not been determined, they have been called public theorems. However, 
in the above-mentioned publications, these public theorems have been proved in the case of infinite 
stage games. The transfer of these results to the case of finite stage games came up against the 
impossibility of realizing penalizing strategies in the last stages of the game. A new approach was 
developed in [4] which uses both penalty strategies as well as the usual Nash equilibrium for repeated 
bimatrix games. The problem of constructing the corresponding Nash equilibria for finite stage, n-person 
games is completely solved in this paper. 

The problem of constructing strong equilibria, that is, of equilibria which are stable with respect to 
the deviations of coalitions of players, is important in the game theory. It does not have a specific meaning 
in the classical steady-state case since, as a rule, such equilibria do not exist. Therefore, in the classical 
game theory, equilibria which are stable with respect to the deviations of individual players were actually 
considered [5, 6]. Light has been thrown on this question in the greatest detail in [7]. In this paper, we 
have succeeded, using the ideology of the public theorems, in constructing a strong equilibrium, making 
fairly broad assumptions and in obtaining the conditions for its existence in the case of infinite stage 
games. A multistage game, at each stage of which the n-person "Prisoner's dilemma" game [8] is played, 
is taken as the basic illustrative example. 

1. A N  I N F I N I T E  S T A G E  G A M E  

Consider an infinite, tree-like graph G = (Z, L), where z is the set of vertices and L : Z ~ 2 z, L ( z )  = 
Lz C Z, z ~ Z and L z is the set of vertices which follow after z. We shall assume that the sets Lz, z ~ Z 
are finite. A simultaneous n-person game 

z Z z 
F(z) = (N; X 1 . . . . .  X,,; K 1 . . . . .  g~) 

corresponds to each vertexz ~ Z, where N = {1 . . . . .  n} is the set of players, which is the same for all 
z ~ Z, X~ is the set of strategies of a player i E N (the sets X~, z ~ Z are finite) and KT (x~, ... , x,~) is 
the payoff function of player i (i ~ N, xT ~ XZ). The game F(z) is called a single-stage game. 

tPrikL Mat. Mekh. Vol. 68, No. 4, pp. 667-677, 2004. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
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A transition function 

T(z; xZl . . . . .  x z) = T(z; x z) e L z (T(z;x z)*Oc=~ L z * O )  

is defined for each z e Z. For each vertex z and situation x ~ in the game F(z), the function T determines 
the vertex z' and, correspondingly, the game F(z') (z' = T(z; x ~) e Lz) at the following stage. 

We define a multistage game G(z0) in the tree G = (Z; L) using the simultaneous games F(z) and 
the transition function T as follows. A simultaneous game F(z0) occurs at the initial vertex z0 e Z at 
the first stage. If a situation x z° occurs in this game, then a game F(q),  where zl = T(z0; xZ°), will take 
place at the following stage. If a simultaneous game F(Zk_l) has occurred at step k and a situationx zk< 
has been realized in F(Zk_l), then the game F(zk) (Zk = r(Zk_l; xZ~-~)) will take place at the following 
stage. 

The multistage game G(z0) is terminated if we have L~, = ~ at a certain stage l (in this case, 
z~ T(zl; x ) = ~).  We call the sequence of situations which has been obtained a trajectory and the 

corresponding sequence of vertices z0, q ,  . . . ,  Zk, ... a path in the graph. 
The pure strategy of the conduct 7ti(y),y e Z of a player i e N in the multistage game G is a function 

which places the pure strategy of player i in the single-stage game F(y) : hi(y) = x y e X y in 
correspondence to each vertexy e Z. A mixed strategy of conduct qi(Y),Y e Z of a player i e N in the 
game G is defined as the mapping, which places the mixed strategy of player i in the single-stage game 
F(y) in correspondence to each vertex y s Z. 

We define the payoff function in the game G(z0) as the discounted sum of the gains in the single- 
stage games along the path which has been realized. It will include the discounting factor 8, 8 e (0; 1), 
since infinite paths Zo, zl, . . . ,  Zm . . . .  can appear in the game G(z0). Hence, the payoff is equal to 

e , a  

Ki Z ..Z,.. zm. em = tti tx )o , i ~ N  ( 1 . 1 )  

m = O  

In order to guarantee the existence of the sum (1.1), we shall assume that all the payoffs in the single- 
stage games are uniformly bounded K~(x z) < K, z e Z. 

In the game G(z0), the players possess complete information in the sense that, at each vertex z e Z, 
they known the simultaneous game F(z) in which they are playing and each player remembers all of 
the strategies chosen at the preceding vertices by all t_he players. 

For each vertex y e Z, we consider the subgames G(y)  of the game G(z0) which begin from y and 
are played in the subgraph G(y)  = (ZY,_L). Here, Z y is the set of vertices of the subgraph G(y).  The 

~,7 mKZ'( xz' ~l-m payoff function of player i in the game G(y)  is defined as = . ) . 
We will now consider the trajectory$ ~°, 2~ . . . . .  2e~ . . . .  with the corresponding path 20 = z0, Zl, z2 . . . . .  

where Zk = T(~k_ a; 2z~_~) in which the sum of the payoffs of all the players is a maximum, that is, 

y~ K~"(2z")Sm = max ~., ~ ,  K~'(xZ")8 m= V(zo; N) (1.2) 
z 0 z m 

i e  N m = O  x I , . . . , x m , . . f i e  N m = O  

We shall call this trajectory a cooperative trajectory (it is assumed that the maximum is attained). 
For each subgame G(z), z e Z, we consider a corresponding game ~(z)  = (N, V(z, S)) in the form 

of a characteristic function. The characteristic function V(z; S), S C N is defined as the value of the 
antagonistic game Gs, NIS (z), constructed using the structure of the game G(z) between a coalition S, 
which plays the role of a maximizing player, and a coalition NIS, which plays the role of a minimizing 
player. The payoff of player 1 (the coalition S) is defined as the sum of the payoffs of its members. It 
is additionally assumed that the values V(z;S)  exist for every z ~ Z and S C N. We denote the pair of 
optimal strategies of conduct in the game Gs, NIS (7.) by (q~('), q}ls(')). Here, 

q~(.) = {g/~( . ) ; ie  S}, g/~v\s(') = {g/~( . ) ; ie  N\S} (1.3) 

Hence, the pair of strategies (q}(.), q~s(')) in the game Gs, NIS (Z) forms a certain situation in the game 
G(z) :qz(.) = (q~(.) . . . . .  q~(.)). 

We consider a sequence of subgames ~(2m) along z0, Zl, . . . ,  Zm, ... • Bellman's equation is satisfied 
in the case of the characteristic function V(2m, N) and 
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l } V(~m; N) = max ~ K~"(x z") + ~V(T(Zm; xZ'); N) 
x z'n [ i ~  N 

V(~m; N) = Z K~m(fC~:m)+aV(Zm+l; N) 
i ~ N  

In each subgame G(2'rn), we consider the C-kernel q ~ m )  and assume that C(Zm) ¢ (~. In each subgame 
G(Zm), we construct a new characteristic function V(2m, S) as follows: 

t ~,, _ ,~,,, _~,~ } V(Zm; S) = max ~ K i (X Ilxs) + 8V(T(~,,; x Ilxs); S)  , Xs = {xj, j ~ S} (1.4) 
Xs t . ie S 

Then 

f'(£m; N) = V(~m;N), r V(Zm;S)>-V(Zm;S), S ~ N  

[9(~m;S~)>9(~m;S2) , $ 2 ~ S  ~ 
(;.5) 

The characteristic function l :cannot be superadditive. In the game a(zm) --- {N~ ~r(Z m ; S)), we construct 
the C-kernel C(~m) using the new characteristic function. 

It follows from relations (1.5) that C($m) C C(2m) (m = O, 1 . . . .  ). 

2. R E G U L A R I Z A T I O N  OF T H E  G A M E  G(z0) 

We will assume the C(zm) ;~ O (m = 0, 1,...). Suppose the sharing a = (al, ... , an) ~ C(z0). The sequence 
of vectors 13 = ~1, -.. , ~t, --. (I]l = (~lt, -.. , [3nl)) is called the procedure of  the distribution of  shares in 
time (PDS) if the following conditions are satisfied 

f~i Z ~i'81" O~i ~" Z l-m : m ~it 8 , i ~  N ( a  = a ° ) ,  
l=O I = m  

[ m m m 
= (0t 1 . . . . .  a n ) ~ C(~,~) (2 .1 )  

A PDS ~ exists for each sharing ~ ~ C(z0) for an arbitrary sequence of shares a = c~ °, a 1, . . . ,  o~ m, ... 
( ~  ~ C(2m)) and it can be defined as follows: ~im = a m  -- ~O~m + 1, i ~ N (m = O, 1, ...). 

We will now consider a multistage game Gp(z0) which differs from the game G(z0) solely in the values 
of the payoff functions along the cooperative trajectory. We will assume that, in the game G~(zo), in 

-era - = y.~m each single-stage game F(zm) (m = 0, 1, ...) the payoff in the situation (x 1 , . . . ,  ~m) is defined 
as 

- -  -z,n Zm 

K i ( X l  . . . . .  "~n ) = ~im, i ~ N, m = O, 1 . . . .  

instead of K/~ (£em) (the payoff in the game F(2m) ). For all other situation (x~ m . . . .  ~m , Xn ), the payoff 
- ~,~ 2m K : m ( x ~ m ,  Zm Asabove, qZo(.),is the strategy remains unchanged: K i (x 1 , . . . ,  Xn ) = "" ,x n ). N, is conduct 

in the game G~(z0) and Qi is the set of conduct strategies. 
The situation in the conduct strategies q*(.) = (q~(.), . . . ,  q*(.)) is called a strong transferable Nash 

equilibrium in the game G~(z0) if 

Ki(q*(.)) > y~ Ki(q*(.)llqs(.)), V S c  N, qs(') ~ l-I  QJ (2.2) 
i ~ S  i ~ S  j ~ S  

Theorem 1. The strong transferable Nash equilibrium (2.2) in the conduct strategies exists in the game 
C (z0). 

Proof. We consider the following situation ~(-) = (ql(') . . . . .  ~,(.)) in the game GI3(z0) 

-z'm - z ' p  " 
qi(') = Xi for Z = Zm; gti(') = qi (Z) when z ~ zZ'; (2.3) 
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the component 0i(') is arbitrary in other cases where F(2p) is the first single-stage game from the sequence 
of games F(20) . . . . .  F(2m) . . . .  , in which a coalition S C N exists such that i ~ S and the players j ~ S 
deviate from 2j5; glTp(z) is the ith component of the -~ strategy q~s(')  in the game Gs, NIS ( : ) .  

We will prove that the situation c)(.) = (01(') . . . .  ,0n(')) is a strong transferable Nash equilibrium. It 
follows from the definition of the strategies eli(') (i = 1, 2, . . . ,  n) that 

i~ S iE Sm=O i~ S i~ S 

We will now consider the situations (~(.)[[qs(')), S C N and the payoffs in these situations. If qs(') 
is identical with C)s(') along 20 . . . . .  Zm . . . . .  then it is clear that 

Ks(O(.)) = Ks(O(.)llqs(.)) 

We will assume that the strategy qs(') prescribes the conduct in one of the single-stage games F(2m) 
(m = 0, 1, ...), which differs from the conduct which is prescribed by the strategy C)s(- ). We will denote 
the first vertex of the path 20 . . . . .  Zm . . . .  , in which qi(2m) : 2fp, j c S by 2p. 

In this case, in the situation (0(')llqs(')) the deviating coalition S cannot obtain more than 

= I -~/' } 5Pf/r(Zp'~ S) 5Pmax ~ ,  g~(Yce'llxs) + 5V(T(~p;  x Ilxs); S) 
Xs ( j e  S 

-~. 
since, after deviating from x)p, j ~ S, the coalition of players NqS will play against the coalition 
S: in accordance with the property (2.3) the players from the coalition N~S will play against the 
coalition S in the antagonistic game Gs, Ms (z'), where z' = T(2p; 2zFllXs) with a value of the game 
V(T( p; Ilxs); s. 

From the definition of the PDS [3 (see condition (2.1)), we then obtain 

Z Ki(0(')) "~ E ~imSm = E [  Z ~ m > Z [  Z ~ im 5 + 5Po[ _ im 5m "l- 

iE S i~ Sm=O i~ SLm=O i~ SLm=O 
p- 1 (2.4) 

+ 5" a," _> 2 + s) _> 2 K;(0(.)llqs(.)) 
i~ S ie Sm=O ie S 

The inclusion aP ~ C(2p) has been used here and, also the fact that, in the penultimate link in the 
chain of inequalities (2.4), the sum over i c S is equal to the gain which the coalition S receives in the 
firstp stages when the players from S do not deviate from the cooperative trajectory and the last term 
is equal to the upper boundary of the payoffs which the coalition S can obtain after having deviated. 
This completes the proof. 

We will consider the case when G(z0) is the infinitely repeated game F = F(z). Then, K z = Hi, 
2 z = ~ at each stage. 

In this case, it is necessary to consider a cooperative modification P of the game F, the characteristic 
function of which V(S) is defined as the value of the antagonistic game Fs, NIS between a coalition S as 
player 1 (maximizing) and a coalition NIS as player 2 (minimizing) which is generated by the game F. 
We assume that the kernel in the game F is not empty. It is denoted by C(F). The value of the game 
Gs, NIS (Zm) will be equal to 

s) = v ( s ) g  - v(s) (2.5) 
1 - 5  

l=m 

and the characteristic function 1)(2 m; S) can be calculated using the formula 

9(~,n; S ) = m a x ( y ~ H j ( 2 1 1 X s ' + S V ~ }  
s t.j~ S 

(see expression (1.4) in which it is necessary to put K f  = Hi, 2 z = 2). 
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For any sharing 7 =~70 e C(F), defining the PDS I~ as follows: Dim = 7i (m = 0, 1, ...), we consider 
the regularized game Gv(zo). 

The existence of the PDS is equivalent to the non-emptiness of the kernel (?(2m) with a characteristic 
function V(2m; S) which implies the existence of a solution of the following inequalities 

y , y / > f ' ( S ) ,  S c N ;  f / (S)=(1-8)maxf~,Hi(Ycl IXs) t+SV(S)  (2.6) 
i e  S Xs [ j e  S ) 

Here, account has been taken of the fact that 
o o  

m 7 i  

l = m  l = m  

It follows from inequalities (2.6) that the sharing y ~ C(F) must always also belong to C(F), the C- 
kernel, generated by the^characteristic function V(S) (2.6) in the single-stage game F. It is clear that 
V(S) > V(S), S C N and C(F) %® means that C(F) ¢ ® also. 

The characteristic function V(S) can be interpreted as a mathematical description of the maximum 
payoff of the coalition S in the game F if the coalition S deviates from cooperation with a probability 

(8 e (0; 1)). 
The following theorem can be formulated. 

Theorem 2. If the kernel C(F) in the single-stage game F, which is defined by the characteris,tic function 
(2.6), is not empty, then a strong transferable equilibrium exists for any sharing "¢ e C(F) in the 
regularization G v of the game G(z0). 

3. T H E  R E P E A T E D  n - P E R S O N  " P R I S O N E R ' S  D I L E M M A "  G A M E  

In the n-person "Prisoner's dilemma" game, each of the n players has two strategies, which we call C 
and D, such that 

(1) for each player, D is the predominant strategy (D > C). 
(2) if all the players choose strategy D, their payoffs will be smaller than if all the players choose 
strategy C. 

We will consider a repeated game G in which the n-person "Prisoner's dilemma" game F = (N, 
{X/}i ~ N, {Hi}i ~ N) is played at each stage. 

For each player i, the set of strategies X/ consists of two strategies: C and D (X/ = {C, D}); 
H/(xl, . . . ,  xn) is the payoff function of the player i (i e N, xi e Xi). The payoff Hi of player i depends 
on which strategy (C or D) the player chooses as well as on the number of players k (k = 0, 1, 2 . . . . .  
n - 1) who have chosen strategy C, and it is defined as follows: 

Hi(') = Ck when player i chooses strategy C, 
Hi(') = dk when player i chooses strategy D. 
Here k is the number of players from N~{i} who have chosen strategy C (the remaining (n - 1 - k) 

players have chosen strategy D) The parameters c~, dk satisfy the conditions 
(1) dk > Ck for all k = 0, 1, 2, . . . ,  n - 1, since D > C; 
(2) Cn-1 > do; 
(3) ck>ek_ landdk>d~_l fork  = 0, 1,2 . . . . .  n - 1 .  

Since D > C, the situation (D, D . . . . .  D) is a Nash equilibrium in the game F but it is not Pareto 
optimal since the situation (C, C . . . .  , C) is better for all players. 

We will now consider a cooperative modification of the game F with a characteristic function V(S). 
We have 

V(S) = max (let_l + ( s -  l)dl), s = ISI (3.1) 
O<_l<s 

since strategy D for each player from the coalition N~S is the optimal strategy of the coalition N~S in 
the game Is, ~as- Then 

V({i}) = d 0, i~  N 

V(N) = max ~ Hi(x ) = max (1Q_l + (n -  l)dl) 
x e  l'I~elvXii ~ N O<l<n 
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It can be shown that the C-kernel, C(F), in the game F is not empty. To do this, it is sufficient to 
verify that the sharing y = (Y1 . . . .  , Yn) is such that Yi = V(N)/n, (i = 1, 2 . . . . .  n) belongs to the C-kernel 
c ( r ) .  

Suppose 2 is an arbitrary situation in the game F for which the sum of the payoffs of the players is 
a maximum, that is, 

Hi(Yc) = max y~ Hi(x)  = V(N)  (3.2) 
ie N x~ Hi~NXii e N 

We will define the cooperative trajectory as follows: 2 z = 2. We consider the characteristic ~nct ion 
I)(S) (see (2.6)) and the corresponding C-kernel C(F). In the case of an arbitrary^sharing y e C(F), we 
consider the regularized game Gv(zo). At each step m (m = 0, 1 . . . .  ) of the game Gr(zo), in the situation 
2 z player i receives a payoff [3ira -- Y. For convenience in the presentation, the following notation is 
introduced 

H(S)  = y~ ~i, K(S)  = max HAYcllxs) 
i~ S XS~ rli~xs Xi 

We can formulate the following theorem. 

Theorem 3. Suppose H(S)  > V(S) for all S C N. If the discounting factor 8 ~ (0, 1) is such that 

1 > 8 >_ max K(S) - H(S)  (3.3) 
SeN: K(S)>H(s)K(S) - V(S) 

then the situation of a strong transferable equilibrium exists in the regularization Gy of the repeated 
"Prisoner's dilemma" game. 

To prove this, it suffices to note that, in the repeated "Prisoner's dilemma" game, the penalty is the 
same for all coalitions S C N w h o  have deviated from the cooperative trajectory (each player from the 
coalition N~S chooses strategy D). 

It follows from the definition of the C-kernel C(F) that H(S)  > V(S). If there is just one coalition 
So, [So [ < n, for which H(So) = V(So), it is impossible to punish the coalition So. 

4. T H E  F I N I T E  STAGE G A M E  

Consider the finite tree of the game G = (Z, L). As earlier, a simultaneous (single-stage), n-person 
game 

z z. z K z) F(z) = (N; X 1 . . . . .  X,,, K 1 . . . . .  

is set in correspondence to each vertex z e Z. 
Using the single-stage games F(z) and the transition function T, we define the multistage game G(z0) 

in the graph G = (Z, L) in a similar way as in the case of infinitestage games. The multistage game 
G(z0) is terminated if 1Lz~ = Q at a certain stage (in this case, T(zl; x ~t) = ~ ) .  

The payoff function in the game G(z0) is defined as the sum of the payoffs in the single-stage games 
along the path z0 . . . . .  zk, . . . ,  zl which has been realized. Hence, the payoff of player i in the game G(z0) 
is equal to 

l 
zm Zm 

K i =  X K i ( x  ), i ~ N  
, , n=0  

In the game G(z0), the players possess complete information in the sense that, at each vertex z ~ G, 
they know the game F(z) in which they are simultaneously playing and each player remembers all the 
strategies chosen at the preceding vertices by all the players. 

For each vertexy s Z, we consider the subgames G(y) of the game G(z0) which start at the vertexy 
and are played in the subgraph G(y)  = (Z y, L) .  

We shall assume that all the single-stage games are finite (they have finite sets of strategies). We now 
consider the antagonistic game Gi(z), which is played using the structure of the game G(y) between a 
player i (maximizing) and the coalition (N~{i}), which plays as a minimizing player. A value of this game 
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exists in the strategy of the conduct, and we denote it by V(y; {i}). We denote the corresponding 
equilibrium situation in the game ~i(Y),  Y ~ Z by (~Y(z), qY~{i}(z)) = (c)Y(z), . . . ,  qY(z)). 

A certain situation ~ = (:~ . . . .  , $~) in the game F(z) is specified, and, for each vertex z ~ Z, we 
determine the following functions 

Z - Z  Z - Z  Z Z - Z  Z r 
= m a x  {Ki(x [Ix/)  V(z ; {i})} wi(z ) max {Ki(x [[xi) + V[T(z; x Ilxi); {i}]} = + 

z z z x i E X i X i E X~i 

wi(z) is the maximum payoff which a player i can be guaranteed in a subgame G(z) if he deviates at the 
first stage the subgame F(z) from the specified situation ~z = (~, . . . ,  gz). 

We denote a certain Nash equilibrium in the strategies of the conduct in the subgame G(y) by 
~Y(z) = (~(z) ,  . . . ,  ~Y(z)) and the corresponding payoffs of the players in the subgame G(y)  (y ~ Z)  
by ~i(Y), i ~ N. 

We now consider the expression 

s 

H~(zo . . . . .  z,) = ~.~ K ~ ( x  z~) + )~(Zs+,) (4.1) 
m = O  

for each path Zo, zl  . . . . .  zt in the game G(z0) and s, 0 ___ s ___ l. 

Theorem 4. We will assume that an s (0 _< s _< l) exists such that the following conditions are satisfied 
for each s' < s 

s s ' -  1 

H~(Zo . . . . .  Zl) = E K~m(xZm)"lf" ~'~i(Zs+I)~ E K~rn(xZrn)'dc- Wi(~s') (4.2) 
m = 0  m = 0  

o r  
$ 

~.~ K~m(xz') + ~i(zs + t) > wi(zs') (4.3) 
m =$' 

Then, a Nash equilibrium exists in the game G(zo) with the payoffs 

$ 

n~(z 0 . . . . .  Z) = E g~'(xZm) + ~i(Zs+ 1),  

m = 0  

i e N (4.4) 

Proof. We will denote the strategy of the conduct of player i in the game G(z0) by Ui(Z), Z E Z, i ~ N 
and the corresponding payoffs by Ki(ux(z) . . . .  , un(z)) = Ki(u(z)) .  We will define the situation in the 
strategies of the conduct u*(z) = (u~(z), . . . ,  u*(z)) in the game G(z0) as follows: 

I Zm 
x i for z = Zm, m < s  

u*(z)  = ~s . ,  for z e Z  z'+~ 

[q~P(z) for z ~ Z z" 

where F(zp) is the first single-stage game in the sequence of games F(z0), . . . ,  F(zt) in which there is a 
playerj  ~ i who has deviated from xT~. We will prove that this situation u*(z) = (u*x(z) . . . .  , u*(z)) is a 
Nash equilibrium in the game G(zo). 

It follows from the definition of the strategies u*(z), i ~ N and expression (4.1) that 

s 

Ki(u*( ' ))  = H~(Zo . . . . .  Zl) = E K~'(xZ") +)~i(zs+ 1) 
m = O  

We now consider the situation (u*(z)[[ uj(z)), j e N and the payoffs in this situation. 
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If uj(z) coincides with u~(z) along z0 . . . . .  zs and, for z e Z z" ~- ', the situation in the strategies in the 
conduct of u*(z) and (u*(z)Iluj(z)) generate the same probability distributions in the pencil of paths 
with a common root z0, zl, . . . ,  z~, then KSj (u* (z)) = KSj (u* (z) II uj (z)). We now assume that uj(z) is identical 
to u~(z) for z = z0, Zl, . . . ,  z~ but prescribes a behaviour which differs from ~f~ + ~(z) in the subgame G(z~ + 1). 
Since ~Z'+l(z) = (ftf'+~(z) . . . . .  ~2+'(z)) is a Nash equilibrium in the subgame G(z~+ 1), the payoff of 
player j in this subgame cannot exceed Li (Zs + a) and, in the steps Zo . . . . .  Zs (in the single-stage games 
F(z0), ... , F(zs)), the payoffs of playerj  are the same in the situations u*(z) and (u*(z)Iluj(z)). Then, 
in this case 

Rj(u*(z)) _> ~2j(u*(z)lluj(z)) 

We will assume that uj(z) prescribes a strategy differing from u~(z) in one of the games F(z,n), 
0 < m -< s. The first vertex of the path Zo . . . . .  zs, at which uj(Zp) ¢ xfp, is denoted byzp. In this case, player 
j in the situation (u*(z)II uj(z)) cannot receive more than 

p - I  
Zp Zp ~Zp Zp --Zp 

IF, K~ "(xz') + max [K i (x Itxj ) + V(T(zP; X I[Xj ); {j})] = 
z Zp 

m = 0 XjP E Xj 
p - I  

= ~.~ K~'(x z') + wj(zt,) 
m = 0  

since he will be penalised by the coalition N~{j} after deviating fromx] p at stagep and since the players 
from N~{j}, in accordance with the definition u*(.), will play against him in the antagonistic game 
~(z ' )  (z' = T(zP; ZpI[2fP = uj(Zp)) with the value V(T(zp; x~ll2~ ' = uj(zp)); {j}. From conditions (4.2) 
and (4.3) of the theorem, we obtain the inequality 

Kj(u*(z) )  > Kj(u*(z)l luj(z)) ,  j ~ N 

which it was required to prove. 
We will now consider the case of a repeated game G(z0) when the same game F takes place in each 

stage. In this case, we introduce the value of the single-stage antagonistic game Fi in which player i 
comes out as a maximizing player and the coalition N~{i} as the minimizing player. The game proceeds 
according to the structure of the single-stage game F. The value of the game Fi is denoted by V/, i e N. 
All of the paths in the graph G have the same length M. The value of the game Gi(zk) is equal to V(zk; 
{i}) = ( M -  k)V/and depends solely on the number of stages in the game ~i(z~) and is independent of 
the vertex z~. Also, )~i(zk) = (M - k))~i, where )~i is the payoff in a certain specified Nash equilibrium in 
the game F. 

Theorem 5. We now consider a situation x = (Xl, . . . ,  xn) in a game and use the notation 

H i ( x  I . . . . .  X n) = ~.i, i ~ N 

It is assumed that an s, 0 < s < M exists such that the following conditions are satisfied 

~i + (M - s)L i > m axHi(xll.Tci) + (M - s )  Vi ,  
x i 

Then, a Nash equilibrium exists in the game t~(Zo) with the payoffs. 

S ~ i + ( M - s ) ~ i ,  i ~  N 

i ~ N (4.5) 

Theorem 2 is a corollary of Theorem 1 for repeated games. Note that, in repeated games, if conditions 
(4.5) are satisfied for a certain s, 0 < s _< M, they are also satisfied for all s' < s (since)~i > V/) which is 
not true in the general case considered in Theorem 1. 
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5. E X A M P L E S  

The 3 × 3 "Prisoner's dilemma" game. We consider a 40-stage, 2-person, repeated game in which the 
bimatrix game 

F : I =  
(8; 8) (0; 0) (0; 20) 

(0; 0) (0; 0) (0; 0) 

(20; 0) (0; 0) (1; 1) 

is played at each stage. 
Here, 

~1 ---- ~2 ---- 8, ~'1 = ~'2 -~ 1, V l = V 2 = 0 

From conditions (4.5), we obtain that s < 28. This means that a Hash equilibrium exists in the game 
being considered in which the players choose the situation (1.1) at the first s (s _< 28) stages and situation 
(3.3) at each stage in the last 40 - s  (40 - s  _> 12) stages. In the Hash equilibrium proposed in this paper, 
by selecting s = 8, the players can obtain 8 x 28 + 12 x 1 = 236 while, in a repeated Hash equilibrium, 
they only get 40 x 1 = 40, which is substantially less. 

The repeated M-stage-person "Prisoner's dilemma" game G (see Section 3). For each player i the payoff 
in the Hash equilibrium situation in the game F will be )vi = H/(D, ... , D) = do and is equal to the 
maximum payoff V/which a player i can be guaranteed in a game Fi so that, in this game, the method 
of constructing a new class of equilibria proposed in Section 4 cannot be used. 

For this reason, it is proposed that a regularization of the game be constructed. Suppose Y = 
(&, . . . ,  xn) is a situation in the game F such that Hi(Y) > do for i e N. Such a situation always exists, for 
e_xample, (C, C . . . . .  C). We now consider the_ cooperative trajectory with the corresponding path 
2zo, 2zl . . . . .  ym. Here, ~z = 2 and 2~ = T(2k _ 1 ;  x Z k - 1 )  • 

We construct a new tree-like graph G m = (Zm, L m) using the tree-like graph G, as follows: the path 
z0, zl, . . . ,  ZM in the graph G is such that k <_ M: zj = ~j exists for al l j  < k and ze = T(Yk_ 1; x IIx/) * ek 
for a certain i s N, then, in the graph Gin, w e  have LzM ~ Q and any path which passes through the 
vertex ZM has a length (M + m). In the remaining cases, L~ , Q. Using the single-stage game F and 

• , M 

the transition function T, we determine the regularized game Gm in the tree-like graph Gm. Hence, in 
certain cases, the single-stage game F is repeated (M + m) times in the game Gin, that is, if a player i 
deviates from the cooperative trajectory, the game will be extended by m additional stages and, in the 
case of the players from N~{i}, it will be possible to penalize player i. 

Theorem 6. Assume that do < 0. For 

m > max{ [Hi(2) - max Hi(Ycllxi)l/Vi} 
ie  N xie X i 

in the game Ore, a Hash equilibrium situation with the payoffs 

m 

H i ( z  o,z~ . . . . .  zt) = MHi(x), i e  N. 

exists. 
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